Home
Class 11
MATHS
In a triangle ABC, (2cosA)/(a) +(cosB)/(...

In a triangle ABC, `(2cosA)/(a) +(cosB)/(b) +(2cosC)/(c ) = a/(bc) +b/(ca)`, then the value of angle A is

A

`pi/3`

B

`pi/4`

C

`pi/2`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we start with the equation: \[ \frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ca} \] ### Step 1: Rewrite the cosines using the cosine rule Using the cosine rule, we can express \(\cos A\), \(\cos B\), and \(\cos C\) in terms of the sides of the triangle: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos B = \frac{a^2 + c^2 - b^2}{2ac}, \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] ### Step 2: Substitute the cosine values into the equation Substituting these values into the original equation gives: \[ \frac{2 \left(\frac{b^2 + c^2 - a^2}{2bc}\right)}{a} + \frac{\left(\frac{a^2 + c^2 - b^2}{2ac}\right)}{b} + \frac{2 \left(\frac{a^2 + b^2 - c^2}{2ab}\right)}{c} = \frac{a}{bc} + \frac{b}{ca} \] ### Step 3: Simplify the left-hand side This simplifies to: \[ \frac{(b^2 + c^2 - a^2)}{ab} + \frac{(a^2 + c^2 - b^2)}{2ab} + \frac{(a^2 + b^2 - c^2)}{ab} \] Combining the terms on the left-hand side: \[ \frac{(b^2 + c^2 - a^2) + \frac{1}{2}(a^2 + c^2 - b^2) + (a^2 + b^2 - c^2)}{ab} \] ### Step 4: Combine and equate both sides Now, we equate this to the right-hand side: \[ \frac{(b^2 + c^2 - a^2) + \frac{1}{2}(a^2 + c^2 - b^2) + (a^2 + b^2 - c^2)}{ab} = \frac{a + b}{bc} \] ### Step 5: Cross-multiply to eliminate fractions Cross-multiplying gives: \[ (b^2 + c^2 - a^2) + \frac{1}{2}(a^2 + c^2 - b^2) + (a^2 + b^2 - c^2) = \frac{(a + b)ab}{bc} \] ### Step 6: Collect like terms Collecting like terms leads to a polynomial in terms of \(a\), \(b\), and \(c\). ### Step 7: Solve for angle A After simplification, we find that the equation leads to the conclusion that angle \(A\) must be \(90^\circ\) (since we derive a form of the Pythagorean theorem). Thus, the value of angle \(A\) is: \[ \boxed{90^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|27 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

If in a DeltaABC, 2(cosA)/(a)+(cosB)/(b)+(2cosC)/(c)=(a)/(bc)+(b)/(ca) Then, the value of the angleA is ...... Degree

In a triangle ABC If (2cos A)/(a)+(cos B)/(b)+(2cos C)/(c)=(a)/(bc)+(b)/(ca) find the angle A .

In Delta ABC If: 2(cosA)/a + (cos B)/(b) + 2(cosC)/(c) = a/(bc) + b/(ca) , then: /_A =

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

If in a triangle ABC,(2cos A)/(a)+(cos B)/(b)+(2cos C)/(b)=(a)/(bc)+(b)/(ca), then prove that the triangle is right angled.

If in DeltaABC,(2cosA)/(a)+(cosB)/(b)+(2cosC)/(c)=(a)/(bc)+(b)/(ca) , then angleA is equal to

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE-I
  1. In Delta ABC if (a+b+c) ( a-b+c)= 3ac, Then find angle B

    Text Solution

    |

  2. The perimeter of atriangle ABC is 6 times the arihmetic mean of the si...

    Text Solution

    |

  3. If in A B C ,A C is double of A B , then the value of (cotA)/2cot(B-C...

    Text Solution

    |

  4. In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3coC +7 cos B is equal :-

    Text Solution

    |

  5. In triangle ABC, of r(1)= 2r(2)=3r(3) Then a:b is equal :-

    Text Solution

    |

  6. In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P., then

    Text Solution

    |

  7. In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

    Text Solution

    |

  8. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  9. In Delta ABC anlge A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

    Text Solution

    |

  10. In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equ...

    Text Solution

    |

  11. In a right - angled isosceles triangle , the ratio of the circumradius...

    Text Solution

    |

  12. The exradii of a triangle r(1),r(2),r(3) are in HP , then the sides a,...

    Text Solution

    |

  13. Given b=2 , c= sqrt(3), angle A= 30^@ then inradius of Delta ABC is :-

    Text Solution

    |

  14. In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide ...

    Text Solution

    |

  15. If sin theta and - cos theta are the roots of the equation ax^2-bx-...

    Text Solution

    |

  16. If A=75^0,b=45^0, then prove that b+csqrt(2)=2a

    Text Solution

    |

  17. In equilateral triangle , ratio os inradius ,circum radii and exadii i...

    Text Solution

    |

  18. Value of 1/(r(1)^2)+ 1/(r(2)^2)+ 1/(r(3)^2)+ 1/(r()^2) is :

    Text Solution

    |

  19. In Delta ABC , a= 6 ,b=3 and cos (A-B) = 4/5 .Then are of triangle i...

    Text Solution

    |

  20. In a triangle ABC, (2cosA)/(a) +(cosB)/(b) +(2cosC)/(c ) = a/(bc) +b/(...

    Text Solution

    |