Home
Class 11
MATHS
Let /\ABC is (B+C)/11=(c+a)/12=(a+b)/12 ...

Let `/_\ABC` is `(B+C)/11=(c+a)/12=(a+b)/12` (where `AB=c,BC=a` and `AC=b)` and `(cosA)/alpha= (cosB)/beta` =(cosC)/gamma` then possible ordered triplet of `(alpha, beta, gamma)` is (A) `(9, 17, 25)` (B) `(19, 7, 25)` (C) `(7, 19, 25)` (D) `(19, 25, 7)`

A

(3,4,5)

B

(19,7,25)

C

(7,19,25)

D

(5,12,13)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|7 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|29 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Given (b+c)/(11)=(c+a)/(12)=(a+b)/(13) for a DeltaABC with usual notation. If (cos A)/(alpha)=(cos B)/(beta)=(cos C)/(gamma) then the ordered traiad, (alpha,beta,gamma) has a vlaue

Given (b+c)/(11) = (c+a)/(12) = (a+b)/(13) for a Delta ABC with usual notation. If (cos A)/(alpha) = (cos B)/(beta) = (cos C)/(gamma) , then the ordered triad (alpha, beta, gamma) has a value:

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

if a=b ne c and alpha=beta=gamma=90^(@) , the crystal system is

With usual notation, if in a DeltaABC(b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then prove that (cosA)/(7)=(cosB)/(19)=(cosC)/(25)

If a != b != c and alpha = beta = gamma = 90^(º) , the crystal system is

With usual notion,if in triangle ABC ,(b+c)/(11)=(c+a)/(12)=(a+b)/(13), then prove that (cos A)/(7)=(cos B)/(19)=(cos C)/(25)

Ifa= cis alpha,b=cis beta,c= cis gamma then (a^(3)b^(3))/(c^(2))=

If a line makes an angle alpha,beta,gamma with positive axes,then the range of sin alpha sin beta+sin beta sin gamma+sin gamma sin alpha is (A)(-(1)/(2),1) (B) ((1)/(2),2)(C)(-1,2)(D)(-1,2]

With usual notatins, if in a Delta ABC,(b+c)/(11)=(c+a)/(12) =(a+b)/(13), then prove that (cos A)/(7) =(cos B)/(19) =(cos C)/(25).