Home
Class 11
MATHS
Expand (3x^2- x/2)^5...

Expand `(3x^2- x/2)^5`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((3x^2 - \frac{x}{2})^5\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify the terms In the expression \((a - b)^n\), we have: - \(a = 3x^2\) - \(b = \frac{x}{2}\) - \(n = 5\) ### Step 2: Write the Binomial Expansion According to the Binomial Theorem, the expansion of \((a - b)^n\) is given by: \[ (a - b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (-b)^k \] For our case, it becomes: \[ (3x^2 - \frac{x}{2})^5 = \sum_{k=0}^{5} \binom{5}{k} (3x^2)^{5-k} \left(-\frac{x}{2}\right)^k \] ### Step 3: Calculate each term of the expansion We will calculate each term for \(k = 0\) to \(k = 5\): 1. **For \(k = 0\)**: \[ \binom{5}{0} (3x^2)^5 \left(-\frac{x}{2}\right)^0 = 1 \cdot (3x^2)^5 = 243x^{10} \] 2. **For \(k = 1\)**: \[ \binom{5}{1} (3x^2)^4 \left(-\frac{x}{2}\right)^1 = 5 \cdot (3x^2)^4 \cdot \left(-\frac{x}{2}\right) = -\frac{15 \cdot 81 x^9}{2} = -\frac{1215x^9}{2} \] 3. **For \(k = 2\)**: \[ \binom{5}{2} (3x^2)^3 \left(-\frac{x}{2}\right)^2 = 10 \cdot (3x^2)^3 \cdot \left(\frac{x^2}{4}\right) = 10 \cdot 27x^6 \cdot \frac{x^2}{4} = \frac{270x^8}{4} = 67.5x^8 \] 4. **For \(k = 3\)**: \[ \binom{5}{3} (3x^2)^2 \left(-\frac{x}{2}\right)^3 = 10 \cdot (3x^2)^2 \cdot \left(-\frac{x^3}{8}\right) = 10 \cdot 9x^4 \cdot \left(-\frac{x^3}{8}\right) = -\frac{90x^7}{8} = -11.25x^7 \] 5. **For \(k = 4\)**: \[ \binom{5}{4} (3x^2)^1 \left(-\frac{x}{2}\right)^4 = 5 \cdot (3x^2) \cdot \left(\frac{x^4}{16}\right) = 5 \cdot 3x^2 \cdot \frac{x^4}{16} = \frac{15x^6}{16} \] 6. **For \(k = 5\)**: \[ \binom{5}{5} (3x^2)^0 \left(-\frac{x}{2}\right)^5 = 1 \cdot 1 \cdot \left(-\frac{x^5}{32}\right) = -\frac{x^5}{32} \] ### Step 4: Combine all the terms Now we combine all the terms we calculated: \[ (3x^2 - \frac{x}{2})^5 = 243x^{10} - \frac{1215x^9}{2} + 67.5x^8 - 11.25x^7 + \frac{15x^6}{16} - \frac{x^5}{32} \] ### Final Answer Thus, the expansion of \((3x^2 - \frac{x}{2})^5\) is: \[ 243x^{10} - \frac{1215}{2}x^9 + 67.5x^8 - 11.25x^7 + \frac{15}{16}x^6 - \frac{1}{32}x^5 \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -2|3 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -3|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|6 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Expand (y+x)^2

Expand (1+x)^-2 .

Expand (2x - 3x^2)^5

Expand (x^2+1/x)^3

Expand (x^(2)+2a)^(5) by binomial theorem.

Expand (i) (3x - 2y)^(2) (ii) ((3)/(4) p - (5)/(6) q)^(2)

Expand (x^(2) + 2y)^(5) using binomial expansion.

Expand (3x+4y-5p)^2

ALLEN-Solutions of Triangle & Binomial Theorem-Do yourself -1
  1. Expand (3x^2- x/2)^5

    Text Solution

    |

  2. Expand (y+x)^2

    Text Solution

    |