Home
Class 11
MATHS
Find last three digits in 19^(100)...

Find last three digits in `19^(100)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the last three digits of \( 19^{100} \), we can use the Binomial Theorem. Here’s a step-by-step solution: ### Step 1: Rewrite \( 19^{100} \) We can express \( 19 \) as \( 20 - 1 \). Therefore, we can rewrite \( 19^{100} \) as: \[ 19^{100} = (20 - 1)^{100} \] ### Step 2: Apply the Binomial Theorem According to the Binomial Theorem, we can expand \( (a - b)^n \) as follows: \[ (a - b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (-b)^k \] In our case, \( a = 20 \), \( b = 1 \), and \( n = 100 \): \[ (20 - 1)^{100} = \sum_{k=0}^{100} \binom{100}{k} 20^{100-k} (-1)^k \] ### Step 3: Focus on the last three digits To find the last three digits of \( 19^{100} \), we need to compute \( (20 - 1)^{100} \mod 1000 \). ### Step 4: Calculate relevant terms We need to consider the terms in the expansion that will contribute to the last three digits: - The term when \( k = 0 \): \[ \binom{100}{0} 20^{100} (-1)^0 = 20^{100} \] - The term when \( k = 1 \): \[ \binom{100}{1} 20^{99} (-1)^1 = -100 \cdot 20^{99} \] - The term when \( k = 2 \): \[ \binom{100}{2} 20^{98} (-1)^2 = \frac{100 \cdot 99}{2} \cdot 20^{98} = 4950 \cdot 20^{98} \] ### Step 5: Calculate \( 20^{100} \mod 1000 \) Calculating \( 20^{100} \mod 1000 \): \[ 20^{100} = (20^3)^{33} \cdot 20^1 \equiv 8000^{33} \cdot 20 \equiv 0 \mod 1000 \] ### Step 6: Calculate \( 20^{99} \mod 1000 \) Calculating \( 20^{99} \mod 1000 \): \[ 20^{99} = (20^3)^{33} \cdot 20^0 \equiv 8000^{33} \cdot 1 \equiv 0 \mod 1000 \] ### Step 7: Calculate \( 20^{98} \mod 1000 \) Calculating \( 20^{98} \mod 1000 \): \[ 20^{98} = (20^3)^{32} \cdot 20^2 \equiv 8000^{32} \cdot 400 \equiv 0 \mod 1000 \] ### Step 8: Combine the results Since \( 20^{100} \), \( 20^{99} \), and \( 20^{98} \) are all \( 0 \mod 1000 \), we can conclude: \[ 19^{100} \equiv 0 + 0 + 0 \equiv 0 \mod 1000 \] ### Final Result Thus, the last three digits of \( 19^{100} \) are: \[ \boxed{000} \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -5|1 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Find the last three digits in 11^(50)

The last three digits in 10! are:

The last three digits, if (12345956)_(10) is expressed in binary system:

Last digit in 13^(2003)

Find (i) the last digit,(ii) the last two digits, and (iii) the last three digits of 17^(256) .

Find the last three digits of the number 27^(27)

The number obtained after dividing the number formed by the last three digits of 17^(256) by 100 is

Find the last two digits of 54^(380) .

Find the last three digits of the sum of all poositive integers x such that sqrt(x+sqrt(1000))=sqrt(a)+sqrt(b). where a and b are positive integers?