Home
Class 11
MATHS
" Value of "((1+i)/(sqrt(2)))^(2)+((1-i)...

" Value of "((1+i)/(sqrt(2)))^(2)+((1-i)/(sqrt(2)))^(2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((1+i)/(sqrt(2)))^(8)+((1-i)/(sqrt(2)))^(8)=

The value of ((-1+i sqrt(3))/(2))^(26)+((-1-i sqrt(3))/(2))^(26) is

The value of (1+i sqrt(3))^2 =

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

(iii) (1+i)/(sqrt(2))=sqrt(i)

Show that ((1 + i ) /( sqrt2 )) ^( 8) + ((1 - i )/( sqrt2 )) ^( 8) = 2.

sqrt(-i) = (1-i)/sqrt2

If (4 + 3i)^(2) = 7 + 24i , then a value of (7 + sqrt(-576))^(1//2) - (7-sqrt(-576))^(1//2) is :

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)