Home
Class 14
MATHS
(loge2)(logx 625)=(log10 16)(loge 10)...

`(log_e2)(log_x 625)=(log_10 16)(log_e 10)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log_(e)2)(log_(x)625)=(log_(10)16)(log_(e)10)

Find the value of x in (log.2)(log_(x)625)=(log_(10)16)(log10)

If (log)_c 2.(log)_b 625=(log)_(10)16.(log)_c 10\ w h e r e\ c >0; c!=1; b >1; b!=1 determine b- a. \ 25 b. 5 c. \ 625 d. 16

If (log)_c 2.(log)_b 625=(log)_(10)16.(log)_c 10 w h e r e c >0; c!=1; b >1; b!=1 determine b- a. 25 b. 5 c. 625 d. 16

What is the value of P if log_(e)2.log_(p)625=log_(10)16.log_(e)10 ?

If log_(e)2.log_(x)25 = log_(10)16.log_(e )10 , then find the value of x.

log_(2)[log_(4)(log_(10)16^(4)+log_(10)25^(8))] simplifies to :

log_(2)[log_(4)(log_(10)16^(4)+log_(10)25^(8))] simplifies to :

The value of x satisfying the equation 2^(log_2e^(In^5log 7^(log_10^(log_10(8x-3)))

The value of sqrt((log_(16)10)/(log_(2)10)+(log_(81)10)/(log_(27)10)), is