Home
Class 11
MATHS
" If "f(x)={[(x^(3)+x^(2)-16x+20)/((x-2)...

" If "f(x)={[(x^(3)+x^(2)-16x+20)/((x-2)^(2)),,x!=2],[k,x=2]" is continuous at "x=2," find the value of "k

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {:{((x^3+x^2-16x+20)/((x-2)^2), x ne2), (k, x =2):} is continuous at x =2, find the value of 'k'.

If f(x)=(x^3+x^2-16x+20)/(x-2)^2, x ne 2 =k, x=2 and if f(x) is continuous at x=2, find the value of k.

If f(x)={((x^(3)+x^(2)-16x+20)/((x-2)^(2))",",x ne 2),(k",", x =2):} is continuous at x = 2, then the value of k is

If f(x)={(x^3+x^2-16x+20)/(x-2)^2,x ne 0 k, x=0 is continuous for all real values of x, find the value of K.

If f(x)={(x^3+x^2-16x+20)/(x-2)^2,x ne 0 k, x=0 is continuous for all real values of x, find the value of K.

If f(x)={(2^(x+2)-16)/(4^(x)-16), if x!=2,k if x=2 is continuous at x=2, find k

f(x)={(2^(x+2)-16)/(4^(x)-16),quad if x!=2k,quad if x=2 is continuous at x=2, find k

If f(x)={((x^3-8)/(x-2)),when x!=2),(k,whenx=2):} is continuous at x = 2, then what is the value of k.

f(x)={((x^2-4)/(x-2),x!=2),(2k,x=2):} is continuous at x=2 then k=

f(x)={[(x^(2)-3)/(x-2),,x!=2],[k,x=2] is continuous at x=2 then value of k is (a) 8, (b) 2, (c) 6, (d) 12