Home
Class 12
MATHS
sin A+sin3A+sin5A+sin7A=...

sin A+sin3A+sin5A+sin7A=

Promotional Banner

Similar Questions

Explore conceptually related problems

sin A+ sin 3A+ sin 5A + sin 7A=

(sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A) is :

(cos2A cos3A-cos2A cos7A+cos A cos10A)/(sin4A sin3A-sin2A sin5A+sin4A sin7A)=cot6A*cot5A

(cos2A cos3A-cos2A cos7A+cos A cos10A)/(sin4A sin3A-sin2A sin5A+sin4A sin7A)=cot6A cot5A

prove that (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)=tan4A

Prove that: (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)=tan4A

Prove that: (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)=tan4A

( cos A + cos 3A + cos 5A + cos 7A )/( sin A + sin 3A + sin 5A + sin 7A ) =

( sin A + sin 3A + sin 5A + sin 7A)/(cos A + cos 3 A + cos 5 A + cos 7A) = tan 4A.

(sin A+2sin3A+sin5A)/(sin3A+2sin5A+sin7A)=(sin3A)/(sin5A)