Home
Class 11
MATHS
56.*2int(0)^(tan^(-1)x)dx=...

56.*2int_(0)^(tan^(-1)x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)tan (2x-1)dx=

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

int_0^(1) tan^(-1) x dx =

2int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Prove that int_(0)^1 ((tan^(-1)x)/x) dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

2 int_(0)^(1) (tan^(-1)x)/(x) dx=

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=