Home
Class 12
MATHS
" If "A^(2)=A," then "(I+A)^(4)" equals ...

" If "A^(2)=A," then "(I+A)^(4)" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^2 = A , then (I + A)^(4) is equal to

If A^2 = A , then (I + A)^(4) is equal to

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals: a) 4A^(2)+2A+7I b) -(4A^(2)+2A+7I) c) -(4A^(2)-2A+7I) d) 4A^(2)+2A-7I

If I=int_(-2)^(2) dx , then I equals

If I=int_(-2)^(2) dx , then I equals

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

If z + 2|z| = pi + 4i , then Im (z) equals