Home
Class 12
MATHS
int(0)^(1)e^(m)+e^(y)=e^(n+y)+tan(dy)/(d...

int_(0)^(1)e^(m)+e^(y)=e^(n+y)+tan(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

int_(0)^(1)dx int_(0)^(x)e^((y)/(x))dy

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If x= (e^(m) +e^(-m))/( 2) ,y =(e^(m) -e^(-m))/(2) ,then (dy)/(dx) =

If e^(x)+ e^(y) = e^(x+y), find dy/dx.

If e^(x)+e^(y) = e(x+y) find dy/dx .