Home
Class 12
MATHS
If f(a+b-x)=f(x),\ then prove that\ int...

If `f(a+b-x)=f(x),\ ` then prove that`\ int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a+b-x)=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

If f(a+b-x0=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

If f(a+b-x)=f(x), then prove that int_(a)^(b)xf(x)dx=(a+b)/(2)int_(a)^(b)f(x)dx

Prove that \int_{a}^b f(x) dx = \int_{a}^b f(a+b-x) dx

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

Prove that, int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx .

Prove that \int_{a}^b f(x) dx = - \int_{b}^a f(x) dx

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx