Home
Class 11
MATHS
[int(1)/(ax+b)dx=],[quad quad (1)/(a)log...

[int(1)/(ax+b)dx=],[quad quad (1)/(a)log_(e)(ax+b)+c],[quad quad log_(e)(ax+b)+c],[quad (1)/(a^(2))log_(e)(ax+b)+c],[quad a log_(e)(ax+b)+c]

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx){log_(e)(ax)^(x)}

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

prove int(1)/(ax+b) dx = (log(ax+b))/a + c, a ne 0

int(1)/(1+e^(x))dx= (a) log(1+e^(x)) (b) log((1+e^(x))/(e^(x))) (c) log(1+e^(-x)) (d) -log(e^(-x)+1)

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that x^(a)y^(b)z^(c ) = 1

log_(e^(2))^(a^(b))*log_(a^(3))^(b^(c))log_(b^(4))^(e^(a))

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that xyz = 1