Home
Class 12
MATHS
int(e^(0))^(1)ln xdx...

int_(e^(0))^(1)ln xdx

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of int_(0)^(1)log xdx

int_(0)^(1)log xdx

int_(0)^( pi)log xdx

int_(1)^(e)log xdx=.......

int_(e)^(e^(2))(log xdx)/((1+log x)^(2))=(e)/(6)(2e-3)

int[((x)/(e))^(x)+((e)/(x))^(x)]ln xdx

Evaluate : int_(0)^(∞)( e^xdx)/ ( 1 + e^(2x) )

(1)/(pi ln2)int_((pi)/(2))^(0)ln sin2xdx=

Evaluate the following : int_(1)^(3)x^(2)log xdx.

Suppose f,f' and f" are continuous on [0,e] and that f^(prime)(e)=f(e)=f(1)=1 and int_1^e(f(x))/(x^2)dx=1/2, then the value of int_1^0 f*(x)ln xdx equals.