Home
Class 11
MATHS
[" The value of "lim(x rarr0)(1)/(x^(3))...

[" The value of "lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(t/n(1+t))/(t^(4)+4)dt" is "],[[" (A) "0," (B) "(1)/(12)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t In (1 + t))/(t^(4) + 4)dt is :

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

Find the value of Lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t(ln (1+t)))/(t^(4) + 4)dt

The value of lim_(x rarr0)(1+(1)/(x))^(x) is-

lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(t ln(1+t))/(t^(4)+4)backslash dt

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

The value of : lim_(x rarr0)(cosx-1)/(x) is

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

The value of lim_(x rarr 0) ((e^(x)-1)/x)