Home
Class 11
MATHS
A solution for 10^x+10^(-x) =4 has the ...

A solution for `10^x+10^(-x) =4` has the form `x =log_(10) (A+sqrt(B))`. The value of (A+B) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

A circle has a radius of log_(10)(a^(2)) and a circumference of log_(10)(b^(4)). The value of log_(a)b is equal to (a)(1)/(4 pi) (b) (1)/(pi) (c) pi (d) 2 pi

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

If log_(10)(x^(2)-6x+10)=0, then the value of x is a.3 b.4 c.1 d.2

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

The domain of y=log_(10)(sqrt(6-x)+sqrt(x-4)) is :