Home
Class 11
MATHS
4 ^nC0+4^2(^n C1)/3+4^3 (^nC2)/3+4^4 (n ...

`4 ^nC_0+4^2(^n C_1)/3+4^3 (^nC_2)/3+4^4 (n C_3)/4+.....+4^(n+1) (n C_n)/(n+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to

nC_(0)-2.3nC_(1),+3.3^(2)nC_(2)-4.3^(3)nC_(3)+.........+(-1)(n+1)nC_(n)3^(n) is eqaul to.

1. ^n C_0+4^1. ^n C_1+4^2. ^n C_2 + 4^3. ^n C_3+….+4^n. ^n C_n =

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

If ""^(n+1)C_(3)=4(""^(n)C_(2)) , then n is equal to

The value of 4(nC_(1)+4.nC_(2)+4^(2)*nC_(3)+......+4^(n-1)} is

[(. ^nC_0+^n C_3+)-1/2(.^n C_1+^n C_2+^n C_4+^n C_5]^2 + 3/4(.^n C_1-^n C_2+^n C_4 +)^2= equals to a. 3 b. 4 c. 2 d. 1

If .^(n)C_3 + ^(n)C_4 > ^(n+1)C_3 then

The expression nC_(0)+4*nC_(1)+4^(2)nC_(2)+.....4^(n^(n))C_(n), equals