Home
Class 11
MATHS
7. If f(x)=|x-a|+|x + b|, x in R,b>a>0. ...

7. If `f(x)=|x-a|+|x + b|`, `x in R,b>a>0`. Then
(1) `f'(a^+)=1`
(2) `f'(a^+)=0`
(3) `f'(-b^ +) = 0`
(4) `f(-b^+)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|[0,x-a, x-b], [x+a,0,x-c], [x+b, x+c,0]|,t h e n (a) f(a)=0 (b) f(b)=0 (c) f(0)=0 (d) f(1)=0

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

If f:R rarr R such that f(x)=(4^(x))/(4^(x)+2) for all x in R then (A)f(x)=f(1-x)(B)f(x)+f(1-x)=0(C)f(x)+f(1-x)=1(D)f(x)+f(x-1)=1

Let f:(0,1)->R be defined by f(x)=(b-x)/(1-bx) , where b is constant such that 0 ltb lt 1 .then ,(a)f is not invertible on (0,1) (b) f ≠ f − 1 on (0,1) and f ' ( b ) = 1/ f ' ( 0 ) (c) f = f − 1 on (0,1) and f ' ( b ) = 1/ f ' ( 0 ) (d) f − 1 is differentiable on (0,1)

If f'(x) = a sin x + b cos x and f'(0) = 4,f(0) = 3, f((pi)/(2))= 5 , find f(x).

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

Let f(x)=a x^(2)+b x+c , a, b, in R, a neq 0 satisfying f(1)+f(2)=0 . Then the equation f(x)=0 has

if f(x)=3|x|+|x-2| then f'(1) is equal to a)2 b)1 c)3 d)0