Home
Class 12
MATHS
If un=int0^(pi/2) x^n sinx dx then u10+...

If `u_n=int_0^(pi/2) x^n sinx dx` then `u_10+90u_8` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

I_10=int_0^(pi/2)x^(10)sinx dx then I_10+90I_8 is

if I_10=int_0^(pi/2) x^(10) sinx dx then the value of I_10 + 90 I_8 is

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

If u_(n) = int_(0)^(pi/2) x^(n)sinxdx , then the value of u_(10) + 90 u_(8) is : (a) 9(pi/2)^(8) (b) (pi/2)^(9) (c) 10 (pi/2)^(9) (d) 9 (pi/2)^(9)

If u _(n) = int _(0) ^(pi//2) x ^(n) sin x dx, n in N then the value of u _(10) + 90 u _(s) is

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx, then show that U_1,U_2,U_3.......U_n constitute an AP. Hence or otherwise find the value of U_n.