Home
Class 11
MATHS
e(1),e(2),e(3),e(4) are eccentricities o...

`e_(1),e_(2),e_(3),e_(4)` are eccentricities of the conics `xy=c^(2),x^(2)-y^(2)=c^(2),(x^(2))/(a^(2))-(y^(2))/(b^(2))=1,(x^(2))/(a^(2))-(y^(2))/(b^(2))=-1` and `sqrt((1)/(e_(1)^(2))+(1)/(e_(2)^(2))+(1)/(e_(3)^(2))+(1)/(e_(4)^(2)))=sec theta` then `2 theta` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1and(y^(2))/(b^(2))-(x^(2))/(a^(2))=1" are "e_(1)ande_(2) respectively then prove that : (1)/(e_(1)^(2))+(1)/(e_(2)^(2))

If e and e_(1) are the eccentricities of xy=c^(2),x^(2)-y^(2)=a^(2) then e^(4)+e_(1)^(4)=

If e_(1)ande_(2) be the eccentricities of the ellipses (x^(2))/(a^(2))+(4y^(2))/(b^(2))=1and(x^(2))/(a^(2))+(4y^(2))/(b^(2))=1 respectively then prove that 3=4e_(2)^(2)-e_(1)^(2) .

If e_(1) and e_(2) are the eccentricites of hyperbola xy=c^(2) and x^(2)-y^(2)=c^(2) , then e_(1)^(2)+e_(2)^(2)=

If e_(1)ande_(2) be the eccentricities of the hyperbola xy=c^(2)andx^(2)-y^(2)=c^(2) respectively then :

If e_(1) , and e_(2) are respectively the eccentricities of the conics (x^(2))/(25)-(y^(2))/(11)=1 and (x^(2))/(16)+(y^(2))/(7)=1 then e_(1)e_(2) is equal to

If e and e_(1) , are the eccentricities of the hyperbolas xy=c^(2) and x^(2)-y^(2)=c^(2) , then e^(2)+e_(1)^(2) is equal to

If e and e' are the eccentricities of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (y^(2))/(b^(2))-(x^(2))/(a^(2))=1, then the point ((1)/(e),(1)/(e')) lies on the circle (A) x^(2)+y^(2)=1(B)x^(2)+y^(2)=2(C)x^(2)+y^(2)=3(D)x^(2)+y^(2)=4

If e_(1) and e_(2) are respectively the eccentricities of the ellipse (x^(2))/(18)+(y^(2))/(4)=1 and the hyperbola (x^(2))/(9)-(y^(2))/(4)=1, then write the value of 2e_(1)^(2)+e_(2)^(2)

If e_(1) is the eccentricity of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and e_(2) is the eccentricity of the hyperbola (x^(2))/(9)-(y^(2))/(b^(2))=1 and e_(1)e_(2)=1 then b^(2) is equal to