Home
Class 12
MATHS
" The smallest positive solution of the ...

`" The smallest positive solution of the equation "2^(sin theta)*4^(sin^(2)theta)*8^(sin^(3)theta)*16^(sin^(4)theta)...oo=4" is equal to "`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 8(sin^(6)theta+cos^(6)theta)-12(sin^(4)theta+cos^(4)theta) is equal to

Solve the equation 3-2cos theta-4sin theta-cos2 theta+sin2 theta=0

Sum to terms of the series sin theta sin2 theta+sin2 theta sin3 theta+sin3 theta sin4 theta+... is equal to

If thetain(0,2pi) then number of solution of equation (sin^(2)2theta+4sin^(4)theta-4sin^(2)thetacos^(2)theta)/(4-sin^(2)2theta-4sin^(2)theta)=(1)/(9)," is//are"

Prove that-: cos^4theta/(1-sin^4theta)=(1-sin^2theta)/(1+sin^2theta)

The smallest positive angle theta satisfying the equation sin^(2) theta - 2 cos theta + (1//4) = 0 is

A value of theta satisfying 4cos^(2)theta sin theta-2sin^(2)theta=3sin theta is

Prove that 4sin theta sin((pi)/(3)+theta)sin((2 pi)/(3)+theta)=sin3 theta

Prove that: sin theta cos^(3)theta-cos theta sin^(3)theta=(1)/(4)sin4 theta

sin2theta+sin4theta=sin6theta