Home
Class 12
MATHS
int(1)/(e^(x)+1)dx is equal to...

`int(1)/(e^(x)+1)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^x)/(e^(x)+1)dx" is equal to "

int(1+x)/(x+e^(-x))dx is equal to

The value of int(x-1)e^(-x) dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int1/(1+e^(x))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to

int sqrt(e^(x)-1)dx is equal to

l=int(dx)/(1+e^(x)) is equal to