Home
Class 11
MATHS
The function f(x)=2ax^(3)+3x^(2)+6(a-1)x...

The function `f(x)=2ax^(3)+3x^(2)+6(a-1)x+1` is decreasing for all real values of `x` .Then the greatest integral value of `a` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=(K tan x+2)/(tan x+1) is decreasing for all values of x then K =

condition that f(x)=x^(3)+ax^(2)+bx^(2)+c is anincreasing function for all real values of x' is

If y = x^3 - ax^2 + 48x + 7 is an increasing function for all real values of x, then a lies in

If (-3, -1) is the largest interval in which the function f(x)=x^(3)+6x^(2)+ax+2 is decreasing, then [a] is equal to (where, [.] denotes the greatest integer function)

Find the values of a for which the function f(x)=(a+2)x^(3)-3ax^(2)+9ax-a decreasing for all real values of x.

Find the values 'a' for which the function f(x)=(a+2)x^(3)-3ax^(2)+9ax-1 decreases for all real values of x

Let f(x) be a function such that f(x)=log_((1)/(2))[log_(3)(sin x+a]. If f(x) is decreasing for all real values of x, then a in(1,4)( b) a in(4,oo)a in(2,3)(d)a in(2,oo)

The interval in which the function f(x)=sin x-cos x -ax +b decreases for all real values of x is given by