Home
Class 12
MATHS
f(x)=(2-x)/(pi)cos pi(x+3)+(1)/(pi^(2))s...

`f(x)=(2-x)/(pi)cos pi(x+3)+(1)/(pi^(2))sin pi(x+3)` where `0ltxlt4` .The number of points of local extrema are

Promotional Banner

Similar Questions

Explore conceptually related problems

An extremum of the function f(x)=(2-x)/(pi)cos pi(x+3)+(1)/(pi^(2))sin pi(x+3),0x<4 occurs at x=1 (b) x=2x=3 (d) x=pi

Let f(x)=[3+2cos x],x in(-(pi)/(2),(pi)/(2)) where [.] is the GIF .Then the number of points of discontinuity of f(x) is

f(x)={((pi)/(2)+x)(x =(pi)/(4)) then (A)f(x) has no point of local maxima

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2))) is k pi^(3) then the value of [1/k] (where [ ] denote the G.I.F )

If tan((2 pi)/(3)-x)=(sin(2(pi)/(3)-sin2x))/(cos(2(pi)/(3)-cos2x)) where 0

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is

sin(pi/3-x)cos(pi/6+x)+cos(pi/3-x)sin(pi/6+x)=1

f(x)=int x^(sin x)(1+x cos x*ln x+sin x)dx and f((pi)/(2))=(pi^(2))/(4) Then the value of |cos(f(pi))| is