Home
Class 11
MATHS
Given abc!=0,a+b+c=0 and a^(2)+b^(2)+c^(...

Given `abc!=0,a+b+c=0` and `a^(2)+b^(2)+c^(2)=1` .The value of `a((1)/(b)+(1)/(c))+b((1)/(c)+(1)/(a))+c((1)/(a)+(1)/(b))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then the value of a^(4)+b^(4)+c^(4) is 1 b.4 c.(1)/(2) d.(1)/(4)

If a+b+c=1,a^(2)+b^(2)+c^(2)=9 and a^(3)+b^(3)+c^(3)=1, then (1)/(a)+(1)/(b)+(1)/(c) is (i)0 (ii) -1(iii)1(iv)3

if abc =2 then the value of (1)/(1+a+2b^(-1))+(1)/(1+(b)/(2)+c^(-1))+(1)/(1+a^(-1)+c)=