Home
Class 12
MATHS
If f(x)=sqrt(4^(x)+8^((2/3)*(x-1)) -72-4...

If `f(x)=sqrt(4^(x)+8^((2/3)*(x-1)) -72-4^(x-(3)/(2))` is defined `AA x>=a,` then the minimum value of `f(a)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

find domain of f(x)=sqrt((4^(x)+8^(2))/(3(x-2)-52-4^(x-1)))

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If f(x) = sqrt(4x^(2)+4x-3) then int(x+3)/(f(x))dx is equal

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

if f(x)=(x^(3))/(3)-x^(2)+(1)/(5) find maximum and minimum value of f(x)

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to

If 2^(1-x) + 2^(1+x), f(x), 3^x + 3^(-x) are in AP. Then minimum value of f(x) is

If f(x)=sqrt(4-x^(2))+sqrt(x^(2)-1), then the maximum value of (f(x))^(2) is

If f(x)=sqrt(x^(2)-4x+4)+6sqrt(x^(2)) is minimum then the number of values of x is: