Home
Class 12
MATHS
sin x(dy)/(dx)+y=y^(2)...

`sin x(dy)/(dx)+y=y^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=sin^(2)y

The degree and order of differential equatiion (x+y(dy)/(dx))^((1)/(2))=(x sin x((dy)/(dx))^(2)+y)/(((dy)/(dx))^(3)) is :

if y+cos y=sin x , (dy)/(dx)=

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)+y cos^(2)x=0

If (sin x)^2 =x+y find (dy)/(dx) Find (dy)/(dx) if y=sin^(-1)[2^(x+1)/(1+4^x)]

find(dy)/(dx) of y^(y)=sin x

Find (dy)/(dx) if y=sin(x^(2))

(dy)/(dx)=sin(x-y)

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is