Home
Class 12
MATHS
If g(x)=ln(1+x)(tan^(-1)x)/(1+x),xgt0 th...

If `g(x)=ln(1+x)(tan^(-1)x)/(1+x),xgt0` then `sgn(g(x))` is,(where `sgn(.)` represents signum function)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ln(1+x)-(tan^(-1)x)/(1+x) , (for x> 0) then sgn f(x) is ( sgn represents signum function)

The range of f(x)= 3^(-|x|)-3^(x)+sgn(e^(-x))+2 (where sgn x denotes signum function of x )

Let f:R to R be defined by f(x) = 5^(-|x|) - 5^(x) + sgn (e^(-x)) + 4 where sgn (x) denotes the signum function of x. Then

10If J=int_(0)^(10)sgn(sin pi x)dx, then 10J is equal to,where sgn x denotes signum function of x

IF f(x)=1/(x+1)-log(1+x),xgt0 , then f is

If f(x)=sgn(cos 2x - 2 sin x + 3) , where sgn () is the signum function, then f(x)

If f(x)=sgn(x^(5)), then which of the following is/are false (where sgn denotes signum function)

Let f(x)=2tan^(3)x-6tan^(2)x+1+sgn(e^(x)),AA x in [-(pi)/(4),(pi)/(4)], Then the positive difference between the least value and the local maximum value of the function is (where sgn (f(x)) represents the signum function)

If the value of of the integral I=int_(0)^(2pi)sgn(e^(x))dx is equal to kpi , then the smallest prime number greatest than 2k is (where, sgn (x) represents the signum functiono f x)