Home
Class 12
MATHS
Let f be a continuous function satisfyin...

Let f be a continuous function satisfying the equation `int_(0)^(x)f(t)dt+int_(0)^(x)1+f(x-t)dt=e^(-x)-1`, then find the value of `e^(9)f(8)` is equal to…………………..

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is