Home
Class 11
MATHS
Let n be an odd integer . If sinntheta=s...

Let n be an odd integer . If `sinntheta=sum_(r=0)^nb_rsin^rtheta` for all real `theta` is
(a) `b_0 = 1, b_1 = 3`
(b) `b_0 = 0, b_1 = n`
(c) `b_0 = –1, b_1 = n`
(d) `b_0 = 0, b_1 = n^2 – 3n + 3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Q. Let n be an odd integer if sin ntheta=sum_(r=0)^n(b_r)sin^rtheta , for every value of theta then b_0 and b_1 ---

Q. Let n be an odd integer if sin ntheta = sum_(r=0)^n(b_r)sin^rtheta , for every value of theta then, a. b_0 = 1, b_1 = 3 b. b_0 = 0, b_1 = 1 c. b_0 = -1, b_1 = 1 d. b_0 = 0, b_1 = 2

Q. Let n be an add integer if sin ntheta = sum_(r=0)^n(b_r)sin^rtheta , for every value of theta then, a. b_0 = 1, b_1 = 3 b. b_0 = 0, b_1 = 1 c. b_0 = -1, b_1 = 1 d. b_0 = 0, b_1 = 2

If a+b=1, then sum_(n=0)^(n)C(n,r)a^(r)b^(n-r) is equal to '

If a\ a n d\ b are two numbers such that a b\ =\ 0 , then (a) a\ =\ 0\ a n d\ b\ =\ 0 (b) a\ =\ 0\ or\ b\ =\ 0 (c) a\ =\ 0\ a n d\ b!=0 (d) b\ =\ 0\ a n d\ a!=0

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^r and a_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r=1)^n r(r+1)(2r+3)=a n^4+b n^3+c n^2+d n+e , then (a) a-b=d-c (b) e=0 (c) a , b-2//3, c-1 are in A.P. (d) (b+d)//a is an integer