Home
Class 12
MATHS
If y=cot^(-1){(sqrt(1+sinx)+sqrt(1-sinx)...

If `y=cot^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))}.` Show that `(dy)/(dx)` is independent of `x.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=

y = Cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] then (dy)/(dx) =

If y = cot^-1{(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} 0 dy/dx is independent of x.

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),find dy/dx.

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).