Home
Class 12
MATHS
lim( n to oo) (sin ""(pi)/(2n) . sin ""(...

`lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n) is equal to

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1/n) is equal to

lim_(nto oo){n" sin"(2pi)/(3n)."cos"(2pi)/(3n)} =

lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)

{:(" " Lt),(n rarroo):} pi/n (sin. pi/n + sin. (2pi)/(n)+sin. (3pi)/(n)+......+sin. ((n-1)pi)/(n))=

lim_(n rarr oo) 1/n[sin(pi/(2n))+sin(pi/n)+sin((3pi)/2n)+........+sin(pi/2)] =

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

Lt_(ntooo)(1)/(n){sin^(2)""(pi)/(2n)+sin^(2)""(2pi)/(2n)+..........+sin^(2)""(npi)/(2n)}

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :