Home
Class 12
MATHS
" Q31.Prove "sqrt((1+sin x)/(1-sin x))=t...

" Q31.Prove "sqrt((1+sin x)/(1-sin x))=tan((pi)/(4)+(x)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1- sin 2x)/(1+ sin 2x) = tan^(2) .((pi)/(4)-x)

Prove that : (1-sin2x)/(1+sin2x)= tan^2 (pi/4-x) .

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

Prove the following: sqrt(frac(1+sin2x)(1-sin2x))=tan(pi/4+x)

If 0

Prove that sec x+tan x=sqrt((1+sin x)/(1-sin x))

Prove that sec x+tan x=sqrt((1+sin x)/(1-sin x))