Home
Class 12
MATHS
If (x^(x)+y^(x))=1," show that "(dy)/(dx...

If `(x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+logx)+y^(x)(logy))/(xy^(x-1))}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(x)+y^(x)=1, prove that (dy)/(dx)=-{(x^(x)(1+log x)+y^(x)log y)/(xy^((x-1)))}

If x^x+y^x=1 , prove that (dy)/(dx)=-{(x^x(1+logx)+y^x. logy)/(x . y^((x-1)))}

If x^x + y^x = 1 , prove that : dy/dx = -[(x^x (1+logx) + y^x.logy)/(x.y^((x-1)))]

if y = x^(x^2), show that dy/dx = x^(x^(2))x(1+2logx)

if e^(x+y)=xy, show that (dy)/(dx)=(y(1-x))/(x(y-1))

If y=sin(x^x) , prove that (dy)/(dx)=cos(x^x) .x^x(1+logx)

If x^(y) + y^(x) = a^(b) then prove that (dy)/(dx)=-[(yx^(y-1)+y^(x)Logy)/(x^(y)Logx+xy^(x-1))] .

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)