Home
Class 12
MATHS
If z=e^((2pi i)/5), then 1+z+z^(2)+z^(3)...

If `z=e^((2pi i)/5)`, then `1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4z^(8)+5z^(9)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z= e^((2pi i)/(3)) , then 1+z+3z^(2)+2z^(3)+2z^(4)+3z^(5) is equal to

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

Divide z (5z^2-80) by 5z(z+4)

z=i^5 then the value of (z+z^2+z^3+z^4)

Divide z(5z^(2)-80) by 5z(z+4)

Z=-5+4i then Z^(4)+9Z^(3)+35Z^(2)Z+4=

If z = -5 + 3i , find the value of (z^(4)+9z^(3)+26z^(2)-14z + 8) .

if 2z+8/3=1/4z+5 , then z=?

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29