Home
Class 11
MATHS
" (5) "(0)^((1)/(4))ln(tan x)dx...

" (5) "_(0)^((1)/(4))ln(tan x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Using integral int_(0)^(-(pi)/(2))ln(sin x)dx=-int_(0)^( pi)ln(sec x)dx=-(pi)/(2)ln2 and int_(0)^((pi)/(2))ln(tan x)dx=0 and int_(0)^((pi)/(4))ln(1+tan x)dx=(pi)/(8)

int_(0)^((pi)/(2))log(tan x)*dx

Evaluate :int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate int_(0)^((pi)/(4))log(1+tan x)dx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(4))log(1+tan x)dx

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

(d)/(dx)(log tan x)