Home
Class 6
MATHS
The number of values of xepsilon[0,npi],...

The number of values of `xepsilon[0,npi]`, `n epsilon z` that satisfy `log_|sinx|(1+cosx)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x in [0,npi] ,n in Z that satisfy the equation log_|sinx|(1+cosx)=2 is

The number of values of x in[0,n pi],n in Z that satisfy the equation log_(|sin x|)(1+cos x)=2 is

The general value of x satisfying the equation satisfying the equation sqrt(3)sin x+cos x=sqrt(3) is given by x=npi+(-1)^npi/4+pi/3,\ n Z b. x=npi+(-1)^npi/3+pi/6,\ n Z c. x=npi+-pi/6, n Z d. x=npi+-pi/3, n Z

Find the range of sinx satisfying log _(" cosx") sinx ge 2 .

Find the range of sinx satisfying log _(" cosx") sinx ge 2 .

Find the maximum value of y=(1+cosx) sinx,x epsilon[0,(3pi)/(4)]

Find the number of solution of log_(1/2) |sinx| = 2 - log_(1/2) |cosx|, x in [0, 2pi]