Home
Class 12
MATHS
lim(x rarr0)(1+ax)^(b/x)=...

lim_(x rarr0)(1+ax)^(b/x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (1+ax)^(b/x)=

lim_(x rarr0)(1-x)^(1/x)=

lim_(x rarr 0) (1-ax)^(1/x) =

L_(1)=lim_(x rarr0^+)(1+x)^(1/x),L_(2)=lim_(x rarr0^(+))(1+x)^(1/x^(2)),L_(3)=lim_(x rarr0^(+))(1+x^(2))^(1/x) ,Then

lim_(x rarr 0)(sin ax)/(bx) is :

Evaluate the following : lim_(x rarr 0)(sin ax)/(bx) .

Statement I: lim_(x rarr0)(x)/(sin b^(2)x)=4 then b=+-(1)/(2) Statement II: lim_(x rarr0)(sin x)/(x)=1

lim_(x rarr0)(a^(x)-b^(x))/(sin x)

Evaluate lim_(x rarr0)((a^(x)-b^(x))/(x))

lim_(x rarr0)(1+x)^((1)/(x))=e