Home
Class 10
MATHS
" If "|x+2|<=9," then "...

" If "|x+2|<=9," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={:{(2x", if " x lt 2),(2", if " x=2),(x^(2)", if " x gt2):} , then

Solve the following: |x-2|=(x-2) , |x+2|=-x-3 , |x^2-x|=x^2-x , |x^2-x-2|=2+x-x^2

f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):} at x = 2 .

f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):} at x = 2 .

If f(x) is continuous at x=2 , where f(x)={:{((x^(2)-(a+2)x+a)/(x-2)", for " x!=2),(2", for " x=2):} , then a=

If f(x)= {:{((x^(2)-4)/(x-2)", for " x!=2),(5", for " x=2):} , then at x=2

Examine the continuity of f(x) = {(|x-2|/(x-2), x ne 2),(1, x =2):} at x = 2

If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ", if " x = 2 ) :} is continuous at x = 2 , then

Solve the following: |x-2|=(x-2) |x+2|=-x-3 |x^2-x|=x^2-x |x^2-x-2|=2+x-x^2