Home
Class 12
MATHS
Delta ABC" Prove that "sin((B-C)/(2))=(b...

Delta ABC" Prove that "sin((B-C)/(2))=(b-c)/(a)cos((A)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)

For any triangle ABC, prove that (sin(B-C))/(2)=(b-c)/(a)((cos A)/(2))])

In Delta ABC , prove that : sin ((B - C)/(3)) = ((b -c)/(a)) cos ((A)/(2))

In any triangle ABC, prove that following: sin((B-C)/(2))=(b-c)/(a)(cos A)/(2)

In any Delta ABC, prove that :(b+c)cos((B+C)/(2))=a cos((B-C)/(2))])

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

In any Delta ABC, prove that :(a-b)/(c)=(sin((A-B)/(2)))/(cos((c)/(2)))

In Delta ABC prove that 2(b cos^(2)((C)/(2))-c cos^(2)((B)/(2)))=a+b+c