Home
Class 12
MATHS
If x=e^(sin^(- 1^t), y=tan^(- 1)t, then ...

If `x=e^(sin^(- 1^t), y=tan^(- 1)t`, then `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(sin^(-1)t^(t)),y=tan^(-1)t, then (dy)/(dx)

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=a^(sin^(-1))t,y=a^(cos^(-1))t, show that (dy)/(dx)=-(y)/(x)