Home
Class 11
MATHS
" Let "f(x)=(1-x(1+|1-x|))/(|1-x|)cos((1...

" Let "f(x)=(1-x(1+|1-x|))/(|1-x|)cos((1)/(1-x))" for "x!=1" .Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1 then prove that lim_(xto1^(-)) f(x)=0

Let f(x)=x((1)/(x-1)+(1)/(x)+(1)/(x+1)),x>1

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

Let f(x)=x((1)/(x-1)+(1)/(x)+(1)/(x+1)), x gt 1 . Then

Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1 Then f(x) is

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)