Home
Class 10
MATHS
li(x rarr0)(e^(-x)-1)/(x)...

li_(x rarr0)(e^(-x)-1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

lim_(x rarr0)((e^(x)-x-1)/(x))

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

Lt_(x rarr0)(e^(x)-1)/(x) is equal to

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

lim_(x rarr0)(2^(2x)-1)/(x)

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)