Home
Class 12
MATHS
" Prove that "int(0)^(1)x(1-x)^(n)dx=(1)...

" Prove that "int_(0)^(1)x(1-x)^(n)dx=(1)/((n+1)(n+2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)x(1-x)^(n)dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx .

Prove that int_(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)"for n"inN

Prove that int_(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)"for n"inN

Prove that int_(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)"for n"inN

Prove that int(dx)/((1+x^(2))^(n))=(1)/(2(n-1))[(x)/((1+x^(2))^(n-1))+(2n-3)int(dx)/((1+x^(2))^(n-1))],n in N Hence,computer the value of int cos^(4)xdx