Home
Class 9
MATHS
" If "(log x)/(b-c)=(log y)/(c-a)=(log z...

" If "(log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b)," then find the value of "x^(b+c)*y^(c+a)z^(a+b)

Promotional Banner

Similar Questions

Explore conceptually related problems

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

(v) quad if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

(log x)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b')

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If (logx)/(a - b) = (logy)/(b-c) = (log z)/(c -a) , then xyz is equal to :

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)+b^(c+a)+c^(a+b) is

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=