Home
Class 11
MATHS
d/(dx){loge(a x)^x}...

`d/(dx){log_e(a x)^x}`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)log_|x|e=

d/(dx)log_|x|e=

(d)/(dx)[log_(a)x]

If x>0, then (d)/(dx){log_(7)(log x)}=

(d)/(dx)[log_(e)(sin x)*tan x] at x=(pi)/(4) is

The differentiation of log_(a)x(a>0,a)*!=1 with respect to x is (1)/(x log_(a)a) i.e.(d)/(dx)(log_(a)x)=(1)/(x log_(a)a)

(d)/(dx) (log_(5) x^(2)) = ……..

d/(dx)[log_(e) {(e^x + 2) + sqrt(e^(2x )+ 4e^x + 5))}] =

(d)/(dx)[log{e^(x)((x-2)/(x+2))^((3)/(4))}]=