Home
Class 12
MATHS
[" Let "bar(a)=hat i+hat j+hat k,bar(b)=...

[" Let "bar(a)=hat i+hat j+hat k,bar(b)=hat i-hat j+2hat k" and "],[bar(c)=xhat i+(x-2)hat j-hat k" .if the vector "bar(c)],[" lies in the plane of "bar(a)" and "bar(b)," then "x],[" equals: "quad [2007]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar c=x hat i+(x-2) hat j- hat k . If the vector c lies in the plane of a and b , then x equals

If bar(a)=3hat i-3hat j-4hat k, bar(b)=hat i+2hat j+hat k and bar(c)=3hat i-hat j-2hat k , then [bar(a) bar(b) bar(c)] =

Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar c=x hat i+(x-2) hat j- hat k . If the vector c lies in the plane of a and b , then x equals (1) 0 (2) 1 (3) -4 (4) -2

Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar c=x hat i+(x-2) hat j- hat k . If the vector c lies in the plane of a and b , then x equals (1) 0 (2) 1 (3) -4 (4) -2

If bar(P)=hat i+hat j+hat k,bar(Q)=2hat i-hat j-hat k , then bar(P)-bar(Q) is

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Let bar(a)=hat j-hat k and bar(c)=hat i-hat j-hat k then the vector bar(b) satisfying bar(a)timesbar(b)+bar(c)=0 and bar(a).bar(b)=3 is

If bar(a)=hat i+2hat j-hat k and bar(b)=3hat i+hat j-5hat k find a unit vector in a direction parallel to vector (bar(a)-bar(b))