Home
Class 11
MATHS
" If "|vec a|=3,|vec b|=4," then a value...

" If "|vec a|=3,|vec b|=4," then a value of "lambda" for which "vec a+lambdavec b" is perpendicular to "vec a-lambdavec b" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a| = 3, | vec b| = 4 , then the value of lambda for which vec a + lambda vec b is perpendicular to vec a = lambda vec b is

If |vec(a)| = 3, |vec(b)| = 4 , then the value 'lambda' for which vec(a) + lambda vec(b) is perpendicular to vec(a) - lambda vec(b) , is

If |vec(a)| = 3, |vec(b)| = 4 , then the value 'lambda' for which vec(a) + lambda vec(b) is perpendicular to vec(a) - lambda vec(b) , is

If |vec(a)|=3, |vec(b)|+4 , then for what value of 1 is (vec(a)+lambdavec(b)) perpendicular to (vec(a)-lambdavec(b)) ?

If | vec(a) | =3 and |vec(b) |=4 , then the value of lambda for which vec(a) + lambda vec(b) and vec(a) - lambda vec(b) are perpendicular is

If |vec(a)|= 4 and |vec(b)| = 3 find the value of lambda for which the vectors vec(a) + lambda vec(b)and vec(a) - lambda vec(b) are perependicular to each other .

If vec a = i + 2j+3k, vec b = i-2j+k, vec c = 4i+3j-2k and vec a + lambda vec b is perpendicular to vec c then lambda =

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .