Home
Class 12
MATHS
int(0)^( pi/3)|tan x-1|dx=...

int_(0)^( pi/3)|tan x-1|dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: int_(0)^( pi/2)log|tan x|dx=0

If int_(0)^(pi) f(tan x) dx= lambda then int_(0)^(2pi) f(tan x) dx=

int_(0)^(pi//4) tan x dx

int_(0)^( pi/4)tan^(3)dx

int_{0}^(pi/4)|tan x|dx

int_(0)^( pi/4)(1+tan x)/(1-tan x)backslash dx

int_(0)^( pi)|sin x|-|cos x||dx is equal to (a) tan((3 pi)/(8))( b) tan((pi)/(8))(c)4tan((pi)/(8))(d)2tan((3 pi)/(8))

int_0^(pi//4) 2 tan^3 x dx=1-log 2

int_0^(pi/4) 2 tan^3 x dx=1-log 2