Home
Class 12
MATHS
" 113.Let "f(x)=int(2)^(x)(dt)/(sqrt(1+t...

" 113.Let "f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)))" and "g" be the inver "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then,the value of g'(x) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then the value of g'(0) is a)1 b)17 c) sqrt(17) d)None of these

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

Let f(x) = int_2^(x) (dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then g^('1)(0) =

Let f(x)=int_(4)^(x)(dt)/(sqrt(1+t^(3))) and g be the inverse of f ,then the value of g'(0) is equal to

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.